

Building College-University Partnerships for Nanotechnology Workforce Development

Nanotechnology, Energy, and Energy Storage

- 114.1 nm

- 322.6 nm

Friday, April 10th, 2015

The webinar will begin at 1pm Eastern Time

Building College-University Partnerships for Nanotechnology Workforce Development

Nanotechnology, Energy, and Energy Storage Friday, April 10th, 2015

114.1 nm

- 322.6 nm

The webinar will begin at 1pm Eastern Time

Brought to You By:

The NACK Network, established at the Pennsylvania State College of Engineering, and funded in part by a grant from the National Science Foundation (DUE 1205105).

Today's Presenter

Dr. Hongli Zhu

Dr. Zhu is currently a postdoctoral research associate at the Energy Research Center of University of Maryland. Her work focuses on the research of environmentally friendly green biomaterials, electronics, energy storage and energy harvesting, including: 1) sodium- / lithium- ion battery and super capacitor; 2) design and application of novel transparent nano-structured paper for flexible electronics including solar cells, transistor, touch screen, antenna, actuator, and organic LED et al; 3) Nanomanufacturing, device manufacturing, multifunctional paper and fiber manufacturing.

Moderator: Mike Lesiecki, MATEC

Host: Roxanna Montoya MATEC

Grid Scale Energy Storage for Sustainable Future

Production

- Wind
- Heat
- Solar ...

Electrical grid

Usage

- -Lighting
- -Building
- -Electric Vehicle .

Large scale energy storage: Low Cost! Longer Cycling!

Common Structures

Supercapacitors Ultracapacitor

Terminology

Current collector
Electrode materials
Separator
Electrolyte
Conductive addtive
Polymer binder

Comparison in Energy and Power Density

Battery: bulk storage

Ultracapacitor: surface storage

(high power, long cycling)

Previous Paper Energy Devices

Paper Supercapacitor

Ajayan et al. PNAS, 2007

http://www.paperbatteryco.com/

Paper Battery

Hu et al. PNAS . 2009

Paper Supercapacitor

Kim et al. ACS Nano 2012

Battery Separator

Kim et al. J. Mater Chem. 2012

Paper Solar Cells

Bulovic, Gleason et al. Adv Mater. 2011

Batteries: Opportunities and Challenges

Power Tools / Mobile Devices

Size increases

Na Ion and Na Ion Batteries (Why & What)

Table 1 The comparison between Na and Li elements9-12

	Na	Li
Cation radius	97 pm	68 pm
Atomic weight	23 g mol ⁻¹	6.9 g mol ⁻¹
Eo vs. SHE	-2.7 V	-3.04 V
A-O coordination	Octahedral or prismatic	Octahedral or tetrahedra
Melting point	97.7 °C	180.5 °C
Abundance	$23.6 \times 10^3 \text{ mg kg}^{-1}$	20 mg kg ⁻¹
Distribution	Everywhere	70% in South America
Price, carbonates	~2 RMB per kg	∼40 RMB per kg

R: 97pm

R: 68pm W: 23 g/mol W: 6.9 g/mol

- Volume Expansion
 - Stress release
- Slow Ion Diffusion
- **Diffusion channel**

Huilin Pan et al. Energy Environ. Sci., 2013.

Current Development for Cathode and Anode

Nature-Made Hierarchical Structure

Conductive Wood Fibers as Current Collectors

q X. Han, Y. Chen, <u>H. Zhu.</u>, et al. **Nanotechnology**, 2013.

Sn Anode Preparation

Electrodeposition (Scalable)

Control Experiment: Stiff Copper Foil as Substrate

Compared with Stiff Cu Thin Film and Rigid Fiber

20

Wrinkling to Release Mechanical Stress

Wrinkling to Release Mechanical Stress

Mesoporous Structure for Improved Rate Performance

Nanoporous Cellulose Fibers

Two Control Experiments (no internal channels)

Control 1: Synthetic fibers

Control 2: ALD blocked cellulose fibers

160oC with trimethyl aluminum [TMA, Al(CH3)3] and DI water precursors

Mesoporous Structure for Improved Rate Performance

Carbonized Cellulose Paper for Na-ion Batteries

Conductive paper with nano-sized pores

Morphology of Carbonized Paper

Nitrogen Adsorption-desorption

The specific Brunauer-Emmett-Teller (BET) surface area is 701m² g⁻¹. High porosity and surface area can provide much more active reaction sites during sodiation and de-sodiation

18

Electrochemical Performances

3/8" round discs were directly punched out of carbonized paper for use as binder free anode. Electrolyte 1M NaClO₄ in EC:PC (1:1).

25% for the initial coulombic efficiency

TEMPO-mediated Oxidation Process

To weaken hydrogen bond

Nanoscale, 2011, 3, 71–85.

Carbonized TEMPO Treated Paper--Much Denser!

Electrochemical Performances

Initial coulombic efficiency 72% In the subsequent, the CE raised to 95% for the 2nd cycle.

Energy Storage and Energy Harvesting

- q Sun, C., Zhu, H., et al. Nano Letters, 2015, 15 (1).
- q Gui, Z.,* Zhu, H.,* et al. ACS Nano, 2013, 7(7).
- q Sun, C., Zhu, H., et al. Nano Energy, 2013 (2).

- q Chen. X., Zhu, H. et al. ACS Nano, 2012, 6(9).
- Zhu, H. et al. Nano Energy. 2014, 10.

Zhu, H. et al. ACS Applied Materials and Interfaces. 2014, 6(6).

Conclusions

Ø Natural wood fiber as <u>mechanical</u> <u>buffer</u> and <u>electrolyte reservoir</u> for Tin anode in sodium ion battery

Ø Carbonized Cellulose Paper as a free standing anode for Sodium ion battery

Acknowledgement

Co-workers in Hu's group, University of Maryland, College Park

Hongli Zhu

hongli@umd.edu

Energy Research Center
University of Maryland
College Park

Questions?

How Can We Better Serve You?

\$ (A)

Whether you are joining us live or watching the recorded version of this webinar, please take 1 minute to provide your feedback and suggestions.

Survey link

Webinar Recordings

Certificate of Participation

If you attended the live version of this

1.5 hour webinar and would like a
certificate of participation, please email:

sbarger@engr.psu.edu

2015 Events Calendar

May 21, 2015

Graphene & Other 2D Electronic Systems

Webinar

June 11, 2015

Webinar

Self-Assembled Monolayers

April 13 – 16, 2015

Nanotechnology Course Resources I: Safety,

Workshop

Processing, and Applications

May 12 - 14, 2015

Hands-On Introduction to Nanotechnology for

Workshop

Educators

Want more events? Visit www.nano4me.org/webinars for more details about these and other upcoming workshops and webinars in 2015.