Welcome to NACK’s Webinar

Introduction to Nanofabrication: Top Down to Bottom Up

NACK is an NSF-funded ATE Resource Center supporting faculty in Nanotechnology Education

Hosted by MATEC Networks

www.matecnetworks.org
NACK is the NSF ATE National Center for Nanotechnology Applications and Career Knowledge

The NACK National Center is located at Penn State University

Funded, in part, by a grant from the National Science Foundation.
DUE-08020498
Poll

Raise hand/smile/clap

Chat

Whiteboard
Chat Box

In the **Chat Box**, please type the name of your school or organization, your location, and how many people are attending with you today.
Participant’s Box

Allows you to non-verbally respond to the presenter’s comments.
Let the presenter know if you like what they say with a smile or clap. Raise a hand if you have a question – and then type it into the chat box.
This webinar will have a Poll. Please answer:
I heard about this webinar through:
A. NACK newsletter
B. Email from ETD list serv
C. Email from NACK
D. Friend or colleague
E. Other (please type where in chat box)
Presented by Dave Johnson
Research Assistant
The Pennsylvania State University
Center for Nanotechnology Education and Utilization
djohnson@engr.psu.edu
814-865-0319
Outline

• Basic top-down approaches in nanofabrication
 – Pattern transfer (lithography)
Outline

• Basic top-down approaches in nanofabrication
 – Pattern transfer (lithography)
 – Deposition (or film growth)
Outline

• Basic top-down approaches in nanofabrication
 – Pattern transfer (lithography)
 – Deposition (or film growth)
 – Etching (or removal of material)
Outline

• Basic top-down approaches in nanofabrication
 – Pattern transfer (lithography)
 – Deposition (or film growth)
 – Etching (or removal of material)

• Basic bottom-up approaches in nanofabrication
Top-Down Approach

- Starts with thin films of materials supported by a substrate
Top-Down Approach

• Nanoscale features are defined through a patterning process
Top-Down Approach

• Nanoscale features from the pattern are then transferred to the substrate through additive or subtractive processes
Top-Down Approach

• These steps are performed many times to create complex nanostructures
Top-Down Approach

• Patterning Process: Photolithography
 – A light sensitive material called photoresist is applied to the substrate
Top-Down Approach

• Patterning Process: Photolithography
 – A light sensitive material called photoresist is applied to the substrate
 – A photomask is aligned to the substrate
Top-Down Approach

• A photomask is used to determine which portions of the resist film are exposed to the UV light.
 – Made of glass or quartz with a chrome pattern
 – Even the mask needs to be made with lithography!
Top-Down Approach

• Patterning Process: Photolithography
 – A light sensitive material called photoresist is applied to the substrate
 – A photomask is aligned to the substrate
 – The substrate is exposed to UV light
Top-Down Approach

- Patterning Process: Photolithography
 - A light sensitive material called photoresist is applied to the substrate
 - A photomask is aligned to the substrate
 - The substrate is exposed to UV light
 - The exposed photoresist is developed
Top-Down Approach

• Patterning Process: Photolithography
 – A light sensitive material called photoresist is applied to the substrate
 – A photomask is aligned to the substrate
 – The substrate is exposed to UV light
 – The exposed photoresist is developed
 – The pattern is checked for quality
Top-Down Approach

• There are two general types of UV sensitive photoresists
 – Positive resists
 – Negative resists
• This is an example of positive tone photoresist – “what shows, goes!”
Top-Down Approach

Ultraviolet Light

Mask

Photoresist

Film

Substrate

• This is an example of negative tone photoresist – “what shows, stays!”
Questions?
Top-Down Approach

- Additive Processes: Deposition, Growth & Implantation
 - Deposition
 - Typically requires energy to perform the process
Top-Down Approach

• Additive Processes: Deposition, Growth & Implantation
 – Deposition
 • Typically requires energy to perform the process
 – Growth typically means there is consumption of the substrate to create a new material
 • Typically requires high heat and chemical reactions
Top-Down Approach

• Additive Processes: Deposition, Growth & Implantation
 – Deposition
 • Typically requires energy to perform the process
 – Growth typically means there is consumption of the substrate to create a new material
 • Typically requires high heat and chemical reactions
 – Implantation
 • Used to modify the optical, mechanical, electrical, or etch characteristics of a material
 • Typically requires a heating step to anneal the sample
Top-Down Approaches

• Physical Vapor Deposition
 – Evaporation
Top-Down Approaches

- Evaporation
 - Create a vacuum
Top-Down Approaches

• Evaporation
 – Create a vacuum
 – Melt metal pellets
 • Alloys and insulators are difficult to evaporate
Top-Down Approaches

• Evaporation
 – Increase temperature so that molten metal evaporates
Top-Down Approaches

• Evaporation
 – Metal vapor condenses onto your sample
Top-Down Approaches

• Physical Vapor Deposition
 – Sputtering
Top-Down Approaches

Material being gouged way from target by ions

Plasma

Trapped electrons

Argon atoms

Target atoms

Film growth

Substrate
Questions?
Top-Down Approaches

• Chemical Vapor Deposition:
 – Low Pressure Chemical Vapor Deposition
Top-Down Approaches

• Chemical Vapor Deposition:
 – Low Pressure Chemical Vapor Deposition
 – Plasma Enhanced Chemical Vapor Deposition
Top-Down Approaches

- Pressure gauge
- Gas inlet
- Three zone heating element
- Insulation
- Quartz Tube (Chamber)
- Exhaust spent gas to pump
- Internal (profile) Thermocouples
- Gas Flow
- Boat
- External Thermocouples

LPCVD
Top-Down Approaches

PECVD
Questions?
Top-Down Approach

- Subtractive Objects: Wet Etching
 - Uses liquid chemistry to chemical react with substrate materials
Top-Down Approach

• Subtractive Objects: Wet Etching
 – Uses liquid chemistry to chemical react with substrate materials
 – For patterned amorphous materials wet etchants produce isotropic etch profiles
Top-Down Approach

• Subtractive Objects: Wet Etching
 – Uses liquid chemistry to chemical react with substrate materials
 – For patterned amorphous materials wet etchants produce isotropic etch profiles
 – Isotropic features are just as wide as they are deep
Top-Down Approaches

• Subtractive Objects: Reactive Ion Etching
 – Use plasma to ionize gas
Top-Down Approaches

• Subtractive Objects: Reactive Ion Etching
 – Use plasma to ionize gas
 – Processing gas is selected for chemical etching of substrate materials
Top-Down Approaches

- Subtractive Objects: Reactive Ion Etching
 - Use plasma to ionize gas
 - Processing gas is selected for chemical etching of substrate materials
 - A negative bias is placed on substrate to allow for physical etching from positively charged gas species.
Top-Down Approaches

• Subtractive Objects: Reactive Ion Etching
 – Use plasma to ionize gas
 – Processing gas is selected for chemical etching of substrate materials
 – A negative bias is placed on substrate to allow for physical etching from positively charged gas species.
 – The pressure of the system determines the etch profile of the sample
Top-Down Approach

- High pressure etching (100s mT)
 - Creates a small Mean Free Path
 - Promotes a chemical etch
 - Creates isotropic etch profiles
Top-Down Approach

- **High pressure etching (100s mT)**
 - Creates a small Mean Free Path
 - Promotes a chemical etch
 - Creates isotropic etch profiles

- **Low pressure etching (10s mT)**
 - Creates a larger Mean Free Path
 - Promotes a physical etch
 - Creates anisotropic etch profiles
Top-Down Approach

Reactive Ion Etching

Ion drawn to negatively charged cathode

50 Ω Impedance Match

Questions?
The Basic Steps of Top-down nanofabrication. These are used in any sequence.

Lithography

Etching

Material Modification

Depositing or Growing

Courtesy of CNEU
An Example of a Top-Down Nanofabrication Processing Sequence

THIN FILM GROWTH OR DEPOSITION

Film Grown by Chemical Reaction of Ambient species with the Substrate
An Example of a Top-Down Nanofabrication Processing Sequence

THIN FILM GROWTH OR DEPOSITION

Film Grown by Chemical Reaction of Ambient species with the Substrate
An Example of a Top-Down Nanofabrication Processing Sequence

THIN FILM GROWTH OR DEPOSITION

Film Grown by Chemical Reaction of Ambient species with the Substrate

HEAT

Oxygen

Substrate
An Example of a Top-Down Nanofabrication Processing Sequence

THIN FILM GROWTH OR DEPOSITION

Film Grown by Chemical Reaction of Ambient species with the Substrate
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY
Spin on Photoresist
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY

Spin on Photoresist
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY

Align Photomask

Mask

Photoresist

Thin Film

Substrate
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY

Expose with Light

Diagram:

- **Substrate**
- **Thin Film**
- **Photoresist**
- **Mask**
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY

Expose with Light

Diagram:
- Substrate
- Thin Film
- Photoresist
- Mask

Copyright April 2009 The Pennsylvania State University
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY

Chemical Bonds are Altered in Exposed Areas
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY

Dissolve Exposed Photoresist in Liquid Developer
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY

Dissolve Exposed Photoresist in Liquid Developer
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY

Dissolve Exposed Photoresist in Liquid Developer
An Example of a Top-Down Nanofabrication Processing Sequence

LITHOGRAPHY

Dissolve Exposed Photoresist in Liquid Developer
An Example of a Top-Down Nanofabrication Processing Sequence

ETCHING

[Diagram showing layers: Substrate, Thin Film, Photoresist]
An Example of a Top-Down Nanofabrication Processing Sequence

ETCHING

Substrate
Thin Film
Photoresist

(Negative Bias)
An Example of a Top-Down Nanofabrication Processing Sequence

ETCHING

- Chemistry
- Photoresist
- Thin Film
- Substrate
- (Negative Bias)
An Example of a Top-Down Nanofabrication Processing Sequence

ETCHING

PLASMA ETCH

- Chemistry
- + IONS
- Chemistry
- + IONS
- Chemistry
- + IONS

Layers:
- Photoresist
- Thin Film
- Substrate

(Negative Bias)
An Example of a Top-Down Nanofabrication Processing Sequence

ETCHING

PLASMA ETCH

Chemistry

Chemistry

IONS

IONS

Photoresist

Thin Film

Substrate

(Negative Bias)
An Example of a Top-Down Nanofabrication Processing Sequence

ETching

PLASMA ETCH

Chemistry

IONs

Chemistry

Chemistry

Photoresist

Thin Film

Substrate (Negative Bias)
An Example of a Top-Down Nanofabrication Processing Sequence
An Example of a Top-Down Nanofabrication Processing Sequence

SURFACE MODIFICATION

Substrate

Thin Film

Photoresist

Substrate
An Example of a Top-Down Nanofabrication Processing Sequence

SURFACE MODIFICATION

Ion Implantation

Copyright April 2009 The Pennsylvania State University
SURFACE MODIFICATION

An Example of a Top-Down Nanofabrication Processing Sequence

Ion Implantation

Substrate

Photoresist

Thin Film

Copyright April 2009 The Pennsylvania State University
An Example of a Top-Down Nanofabrication Processing Sequence

SURFACE MODIFICATION

Ion Implantation
An Example of a Top-Down Nanofabrication Processing Sequence

SURFACE MODIFICATION

Ion Implantation

Copyright April 2009 The Pennsylvania State University
An Example of a Top-Down Nanofabrication Processing Sequence

SURFACE MODIFICATION

Ion Implantation

Substrate

Photoresist

Thin Film

Substrate
An Example of a Top-Down Nanofabrication Processing Sequence
SURFACE MODIFICATION
Ion Implantation

Substrate

Photoresist
Thin Film

Substrate

Copyright April 2009 The Pennsylvania State University
An Example of a Top-Down Nanofabrication Processing Sequence

SURFACE MODIFICATION

Thermal Anneal
An Example of a Top-Down Nanofabrication Processing Sequence
SURFACE MODIFICATION
Thermal Anneal

HEAT

Photoresist
Thin Film
Substrate
An Example of a Top-Down Nanofabrication Processing Sequence

SURFACE MODIFICATION

Thermal Anneal

HEAT

- Photoresist
- Thin Film
- Substrate

Copyright April 2009 The Pennsylvania State University
An Example of a Top-Down Nanofabrication Processing Sequence

SURFACE MODIFICATION

Thermal Anneal
An Example of a Top-Down Nanofabrication Processing Sequence

Remove the Photoresist (Etch/Ion Implantation) Barrier
An Example of a Top-Down Nanofabrication Processing Sequence

Remove the Photoresist (Etch/Ion Implantation) Barrier
An Example of a Top-Down Nanofabrication Processing Sequence

Remove the Photoresist (Etch/Ion Implantation) Barrier
An Example of a Top-Down Nanofabrication Processing Sequence

Remove the Photoresist (Etch/Ion Implantation) Barrier
An Example of a Top-Down Nanofabrication Processing Sequence

Pattern Transfer and Substrate Modification Complete
Questions?
Outline

• Basic top-down approaches in nanofabrication
 – Pattern transfer (lithography)
 – Deposition (or film growth)
 – Etching (or removal of material)

• Basic bottom-up approaches in nanofabrication
 – Chemical vapor growth: vapor-solid-liquid growth
Outline

• Basic top-down approaches in nanofabrication
 – Pattern transfer (lithography)
 – Deposition (or film growth)
 – Etching (or removal of material)

• Basic bottom-up approaches in nanofabrication
 – Chemical vapor growth: vapor-solid-liquid growth
 – Self assembly: colloidal chemistry
Bottom-Up Approach

• Chemical Vapor Growth: Vapor-Liquid-Solid growth (VLS growth)
 – a catalyst is introduced to direct the growth to a specific orientation in a confined area
Bottom-Up Approach

- Chemical Vapor Growth: Vapor-Liquid-Solid growth (VLS growth)
 - a catalyst is introduced to direct the growth to a specific orientation in a confined area
 - The catalyst forms a liquid droplet that acts as a nucleation site for the growth species
Bottom-Up Approach

• Chemical Vapor Growth: Vapor-Liquid-Solid growth (VLS growth)
 – a catalyst is introduced to direct the growth to a specific orientation in a confined area
 – The catalyst forms a liquid droplet that acts as a nucleation site for the growth species
 – Saturation of the catalyst results in precipitation of a solid, resulting in a one dimensional growth
VLS Growth of Silicon Nanowires

Gold (Au) nanoparticles are positioned on a substrate.
Nanoparticles act as a catalyst releasing silicon (Si) from its precursor (source). Si then dissolves into the gold.
VLS Growth of Silicon Nanowires

Gold nanoparticle becomes supersaturated with Si which then precipitates out as a solid nanowire. (shown in green)
The Si Nanowire (SiNW) has a diameter dictated by the size of the Au nanoparticle.
Questions?
Bottom-Up Approach

• Self assembly: colloidal chemistry
 – Starts with nanoparticles or molecules that aggregate via chemical and physical interactions into the desired nanoscale feature
Bottom-Up Approach

• Self assembly: colloidal chemistry
 – Starts with nanoparticles or molecules that aggregate via chemical and physical interactions into the desired nanoscale feature
 – The resulting nanostructures may reside in a solution, on a substrate, or in an object
Bottom-Up Approach

• Self assembly: colloidal chemistry
 – Starts with nanoparticles or molecules that aggregate via chemical and physical interactions into the desired nanoscale feature
 – The resulting nanostructures may reside in a solution, on a substrate, or in an object
 – There is no use of the lithography or etching steps involved.
Colloid: refers to a state of subdivision

- Implies that the molecules or particles dispersed in a medium have at least one dimension roughly between 1 nm and 1 μm.
- Whipped cream
- Milk
- Fog
- Smoke
Comparative Size Scale

<table>
<thead>
<tr>
<th>Nano-Scale</th>
<th>Meso-Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 nm</td>
<td>10 nm</td>
</tr>
<tr>
<td>10 nm</td>
<td>100 nm</td>
</tr>
<tr>
<td>100 nm</td>
<td>1 μm</td>
</tr>
<tr>
<td>1 μm</td>
<td>10 μm</td>
</tr>
<tr>
<td>10 μm</td>
<td>100 μm</td>
</tr>
</tbody>
</table>

1000 nm = 1 μm

Proteins 100 nm
HIV Virus 100 nm
E. Coli 0.8-2 um
Red Blood Cell 6-8 um
White Blood Cell 12-15 um

All of these could be classified as colloidal particles.
1. Heat a solution of chloroauric acid (HAuCl$_4$) up to reflux (boiling). HAuCl$_4$ is a water soluble gold salt.
Example: Formation of Gold Nanoparticles

2. Add trisodium citrate, which is a reducing agent

Example: Formation of Gold Nanoparticles

3. Continue stirring and heating for about 10 minutes

Example: Formation of Gold Nanoparticles

3. Continue stirring and heating for about 10 minutes
 • During this time, the sodium citrate reduces the gold salt (Au\(^{3+}\)) to metallic gold (Au\(^0\))
 • The neutral gold atoms aggregate into seed crystals
 • The seed crystals continue to grow and eventually form gold nanoparticles

Example: Formation of Gold Nanoparticles

Reduction of gold ions: \[\text{Au(III)} + 3e^- \rightarrow \text{Au(0)} \]

Nucleation of Au(0) seed crystals:

Seed Crystal
10's to 100's of Atoms
Example: Formation of Gold Nanoparticles

Growth of nanoparticles:

- **Seed**
 - **Isotropic Growth** → Spherical Nanoparticles
 - **Anisotropic Growth** → Nanorods

- Surface capped with citrate anions
- Adding surfactant to growth solution caps certain crystal faces and promotes growth only in selected directions
Questions?
Nano4me.org applications:

Introduction of Nanofabrication:
Top Down to Bottom Up
for the classroom maybe found at:

Module 6: How Do You Make Things So Small: An Introduction to Nanofabrication

You may find additional resources and free curriculum for nanotechnology at www.nano4me.org and click Educators.
Nano4me.org applications:

Introduction of Nanofabrication: Top Down to Bottom Up for the classroom maybe found at:

Module 7: How Do You Build Things So Small: Top-Down Nanofabrication

You may find additional resources and free curriculum for nanotechnology at www.nano4me.org and click Educators.
Nano4me.org applications:

Introduction of Nanofabrication: Top Down to Bottom Up for the classroom maybe found at:

Module 8: How Do You Build Things So Small: Bottom-Up Nanofabrication

You may find additional resources and free curriculum for nanotechnology at www.nano4me.org and click Educators.
Questions?
Thank you for attending

NACK’s Webinar

Introduction to Nanofabrication: Top Down to Bottom Up

You may find additional resources and free curriculum for nanotechnology at www.nano4me.org and click Educators.
Join Us in San Francisco, CA
July 25-28, 2011

Visit www.highimpact-tec.org as more details develop
Webinar Recordings

To access this recording or slides, visit

www.matecnetworks.org

Keyword Search:

Nanofabrication Top Down to Bottom Up

You may also find over 100 resources in the NetWorks Digital Library by using the Keyword Search: nanotechnology
NACK Upcoming Webinars

March 25: Nanotech Works - Alumni Success Stories
April 29: Nanotechnology in Medicine

Visit www.nano4me.org and click Educators and then the Webinar tab for more details about these and other upcoming webinars.
Certificate of Participation

If you attended the live version of this 1.5 hour webinar and would like a certificate of participation, please email Sue Barger at sbarger@engr.psu.edu
How Can We Better Serve You?

Whether you are joining us live or watching the recorded version of this webinar, please take 1 minute to provide your feedback and suggestions.

http://www.questionpro.com/t/ABkVkZIOXU
Thank you for attending
NACK’s Webinar

Introduction to Nanofabrication: Top Down to Bottom Up

Hosted by MATEC NetWorks

Classroom Ready Resources in the Digital Library
TechSpectives Blog
Webinars

All this and more at www.matecnetworks.org