

MATERIALS RESEARCH INSTITU

Novel Two-dimensional Materials and Devices for Biomimetic Sensing and Computing

Saptarshi Das

Assistant Professor Engineering Science and Mechanics Materials Science and Engineering Pennsylvania State University <u>sud70@psu.edu</u> This webinar is hosted by:

The Nanotechnology Application and Career Knowledge (NACK) Resource Center is a National Science Foundation (NSF) Advanced Technology Education (ATE) Regional Center for Nanofabrication Manufacturing Education. NACK is a subsidiary of the Center for Nanotechnology Education and Utilization (CNEU) in the Penn State College of Engineering's department of Engineering Science and Mechanics.

This webinar is being recorded and links will be available at nano4me.org, cneu.psu.edu and atecentral.net/webinars.

Please use the Q&A module for questions related to the webinar topic.

Technical questions (i.e. issues with the webinar controls, etc.) may be put in the chat window.

Hosts and Presenters:

Ozgur Cakmak Assistant Teaching Professor Penn State

Saptarshi Das Assistant Professor Penn State

The 2D Revolution

Das. S, et al. Annual Review of Materials Research 45, 1-27, 2015.

5

Why 2D?

$$t_{Si} \approx 6 nm$$

$$t_{2D} \approx 0.6 \ nm$$

Smaller Transistors → More Transistors

More Transistors \rightarrow Better Computing

Supercomputers

0

Power: 10MW power Size: Football field (10⁹ cm³)

Adapted from Google Images

0000

0-0

0

0

1114

Power: 20W Size: 10³ cm³ Power: 10MW power Size: Football field (10⁹ cm³)

Adapted from Google Images

Biological Computing

Biological Computing – non Von Neumann

100 billion neurons (computation) 1000 synapses/neuron 100 trillion synapses (memory)

Biomimetic Computing

Natural Super Sensors

Jewel Beetle: Infrared Radiation Bee: Earth's Magnetic Field

Smell

Cognitive Computing

Sensory Computing

Taste

Barn Owl: Superior Audio Sensor

Sound localization in complete darkness with a precision of 1-3^o

Das, et al. Nature Communications, 2019

Path difference results in interaural time difference (ITD)

Source angle (azimuth)= ϑ Head radius = r_H Sound velocity = v_S

Neurons can fire only once in few ms

Neural Architecture transforms temporal coding into spatial coding

Barn Owl: Superior Audio Sensor

<u>Auditory Cortex of Barn Owl</u> NM: Nucleus Magnocellularis NL: Nucleus Laminaris AN: Auditory Nerve Fiber

Barn Owl: Superior Audio Sensor

Coincidence Detector and Map

Analog Computation

Biomimetic Navigational Sensor Supersedes Barn Owl

Locust: Collision Detector

Jayachandran, et al. Nature Electronics 2020

Locust: Collision Detector

LGMD Neuron Ultra-low energy

Locust: Collision Detector

LGMD Neuron Ultra-low energy

Visual Stimulus Mimicking Approaching Object

Jayachandran, et al. Nature Electronics 2020

Collision Detection

Collision Detection

Jayachandran, et al. Nature Electronics 2020

Growth and fabrication of 2D Nanodevices

Metal Deposition – E-beam *Nanolithography – E-beam*

Stochastic Resonance

Constructive Role of Noise in Sensory Computation

Noise is Nuisance

Noise is Nuisance

Conventional Approach

Signal to Noise Ratio (SNR)
✓ Increase Signal Intensity
✓ Reduce Noise Floor

Conventional Solid-State Sensors

Lock in Amplifier

			83	
6			*	۲
	BHE BONN HUNGARY			-8+12V DC
	RF IN	LOW NOISE AMPLIFIER BLWC16 3.3GHz - 12GHz SIN: 1234/56789/10		RF OUT
4.		۲	۲	۲
-				

Hardware Intensive

- Bulky
- Energy Inefficient

Not appropriate for resource constrained IoT sensors deployed in remote and inaccessible locations with limited power supply and hardware resources

Low Noise Amplifier

Noise Filters

Evolutionary success of animals relies on their extraordinary sensory skills that ensure survival in resource constrained environments

Is Noise a Nuisance ?

Locate Prey

Russell, et al. Nature, 1999

Is Noise a Nuisance ?

Douglass, et al. Nature 1993

Escape from Predator

Levin et al. Nature, 1996

Stochastic Resonance is everywhere

What is Stochastic Resonance

Stochastic Resonance in MoS₂ Photodetector

Experimental Set up

Limit of MoS₂ Photodetector

Dodda, et al. Nature Communications, 2020

Stochastic Resonance in MoS₂ Photodetector

SNR and Energy Benefits

Energy Expenditure : ~ 10 nJ

The concept of SR is generic in nature and can be extended to any other sensor including chemical, biological, thermal and radiation sensor

Brain Inspired Computing and Sensing

Natural Super Sensors

Jewel Beetle: Infrared Radiation Bee: Earth's Magnetic Field

Cognitive Computing

Acknowledgement

Thank You

Semiconductor Research Corporation

Questions?

Upcoming Webinar:

March 10, 2021 at 12 pm EST Dr. Carmen Gomes

Associate Director of Virtual Reality Applications Center Associate Professor Iowa State University

"Future of food and agriculture from macro to nano: opportunities and challenges"

See nano4me.org or cneu.psu.edu/news for updates

Thank you for attending!

Please fill out the survey after the host ends this webinar or click on the link in the chat window. A link to the survey should, also, be in one of the follow-up emails to this webinar.

